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Abstract. We develop the statistical mechanics formulation of the image restoration problem, 
pioneered by Geman and Geman. Using Bayesian methods we establish the posterior probability 
dislribution for restored images, for given data (corrupted image) and prior (assumptions about 
source md corruption process). In the simplest cases. studied here. the posterior is controlled 
by a cost function analagous to the configurational energy of an king model with local fields 
whose sense is defined by the data. Through a combination of Monte Carlo simulation and 
mean-held theory we address three key issues. First, we explore (he sensitivity af the posterior 
distribution to the choice of prior parameters: we find phase transitions separating regions 
in which the dktribution is effective (data-dominared) from regions in which it is ineffective 
(prior-dominated). Second. we examine the question of how best to use the posterior distribution 
to prescribe a single 'optimal' restored image we argue that the mean of the posterior is, in 
general, to be preferred over the mode, both io principle and in practice. Finally. borrowing from 
Monte Carlo techniques for free-energy calculations, we address the question of prior parameter 
estimation within the 'evidence' framework of Gull and MxKay: OUT results suggest that 
parameters identified by Ws framework provide effective priors, leading to optimal restoration. 
only to the extent that the f o r m  of the priors are well matched to the mocesses they claim to 
represent. 

1. Introduction 

Data reconstruction-the inference of underlying structure from experimental data-is one 
of the key problems in modern science. In the context of image restoration the problem is to 
find an estimate of an original picture from a corrupted version of that picture. The essential 
principles of this task are readily identified: it requires the synthesis of information supplied 
in the corrupted image with the information available (or assumed) about the source of the 
image and about the corruption process. The problem lends itself naturally to a Bayesian 
formulation (see e.g. [I]), which allows one to construct a probability distribution (posterior) 
for the original picture, on the basis of model distributions (priors) for source and corruption 
processes, and the image actually observed. Interest in the Bayesian approach to the problem 
has a long history (see e.g. [2-5]), and a more recent resurgence with the introduction of 
prior models based on discrete Markov random fields (MRF) [6,7,9-121. In particular, 
following earlier work by Hammersley and Clifford [8], Geman and Geman [9] (hereafter 
referred to as GG) developed the analogy between the posterior distribution of a simple 
but generic MRF model and the Boltzmann-Gibbs distribution of a lattice king-like model. 
Others have since built on this work, drawing on Monte Carlo algorithms, pioneered in the 
statistical physics context, to explore MRF models by numerical simulation [13-151. There 
has, however, been little attempt to apply the analytic methods of statistical mechanics to 
explore the image restoration process, and, in the absence of any systematic development 
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of the statistical mechanics perspective, many issues remain poorly understood. This is the 
motivation for the present work [16]. 

In the next section we set out the basic theory of the restoration process. We derive the 
posterior distribution from first principles using a prior on the density of edges alone, and 
recover the source posterior proposed by CC. 

Using both analytic and simulation methods we investigate the sensitivity of the posterior 
(and thus the effectiveness of the restoration scheme) to the parametrization of the prior. 
Using a mean-field approximation we construct the phase diagram of the model in the 
space of prior parameters, and discover distinct data-dominated and prior-dominated phases, 
thereby illuminating the successes and failures of such restoration schemes [17, I I]. 

We then proceed to investigate how one may best use the posterior distribution to 
identify a single, in some sense optimal, estimate of the source picture [6,18,19]. We make 
a comprehensive comparison between the MAP estimate (maximum a posreriori, the mode 
of the posterior distribution), determined by simulated annealing, and the TPM (thresholded 
posterior mean) estimate [ 18,111. ’we illuminate the differences between the methods, and 
their strengths and weaknesses [17], by appeal to the mean-field phase diagram. 

Finally we consider a possible method for assigning prior parameters, in the absence of 
which one has to operate on an ad hoc basis (see e.g. 19,191). There has been much work 
on parameter estimation (see e.g. [lo, 20-221). but little that only uses the single corrupted 
image 1231. We explore a generalized maximum likelihood formulation of this problem, 
expressed in the ‘evidence’ framework developed by Gull [24] and MacKay [SI. Neal [26] 
has recognized that the task of comparing the evidence for different parameter choices is 
analogous to that of comparing free energies in a statistical mechanics problem. Building on 
this perspective, we use Monte Carlo methods developed for freeenergy studies to explore 
the utility of the evidence method applied to image restoration. 

Two final remarks are in order on the style of the paper, in the light of the cross- 
disciplinary character of the background. First, the paper is written-in language, notation 
and concept-for the physics (specifically statistical physics) community. Second, while 
providing a selection of references to the background, we have endeavoured to make the 
paper largely self-contained. 

J M P r y e  and A D Bruce 

2. Formulation of the image restoration problem 

2.1. The general framework 

The elements of the image restoration problem are summarized in figure 1. We envisage a 
source image S defined by a set of N binary pixel elements [SI . . . SN), each with possible 
values f l .  The source is drawn from some ensemble described by a source distribution 
P(S). The source image is subject to a corruption process yielding a noisy image, described 
by a set of N pixel elements D zz (Dl . . . DN}; a particular source image S yields a 
particular corrupted image D with probability P(D1S). The source distribution P(S) and 
the likelihood function P(DIS) together specify, stochastically, the process by which the 
corrupted image is generated. A knowledge of their forms is not to be supposed as available 
to the process by which the image is restored. Rather the restoration process must proceed 
on the basis of models of the forms of these functions, synthesising the constraints imposed 
by the models with the information provided by the ‘data’ D to infer a distribution p(RID) 
of possible restored images R. We denote the model functions by p ( S )  and p(DlS). Then 
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-0 
Figure 1. Elemens of the imge restoration problem. An image S appears on the source screen 
with a probability P(S). A mrmpted image D is generated with probability P(D1S) and is 
displayed on the data screen. The restored screen displays an ensemble of images generated 
with probabfitj P(RID). The thresholded mean of this ensemble provides the TPM estimator; 
its mode defines the MAP estimator. 

Bayes theorem [I] identifies 

as the probability that a particular source image S underlies a specific given corrupted image 
D ;  the denominator of the right-hand side is defined in terms of the model functions by the 
normalization condition 

P(D) = P(DIS)F(S).  (2.2) 
IS1 

The distribution of restored images may, indeed must, then be identified as 

F ( R I D )  = F ( s I D ) ~ + ~ .  (2.3) 
A single (in some sense 'optimal') restored image may be identified from this distribution 

in any of a number of ways (figure 1). 
Equations (2.1) and (2.3) provide a general framework for image restoration. In this 

work we explore their consequences in the context of explicit, simple, but non-hivial, 
assignments of the functions P(S) and P(DIS), and their model counterparts; these we 
now proceed to define. 

2.2. Specijic forms 

The model functions F(S) and &DlS) are supposed to express our hypotheses (what we 
know, or are prepared to believe) about the source of the image, and about the corruption 
process. 

Consider first the model function F(DlS). We will adopt the hypothesis that the 
corruption (image degradation) process is such that each pixel in the data differs from (is 
'flipped' with respect to) its counterpart in the source with some probability g, which one 
may think of as expressing some 'noise level'. The model probability distribution for the 
data variable at site i, Di, is then - 

P ( D i l S i )  = (1 - + ) b , , s ,  + ? b , , - s , .  (2.4) 
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Defining i such that 

we have 

- e-h q -  ,+6 + e-i 

so that 

where 

zI(L) = e' + e-' 

The corruption process is supposed to be site-independent, so the model likelihood function 
follows as 

where & ( A )  is determined by the normalization condition 

Now consider the model function p ( S ) .  Suppose we have some prior knowledge about 
the frequency with which 'edges' tend to appear in the source, where by 'edge' we mean a 
pair of pixels, at neighbouring sites i and j ,  that are in opposite states (so that SjSj = - I ) .  
Specifically we adopt the hypothesis that edges appear with some density \h,hich we shall 
denote by b, a guess at some underlying ' h e '  value, 6s. Then, appealing to standard 
information-theoretic arguments (see e.g. [27]), the model prior follows as 

where denotes a sum extending over all pairs of neighbouring sites on the pixel lattice. 
The value of the coupling t is specified implicitly in terms of the edge density Es by the 
constraint 

where v is the number of nearest neighbours of each pixel, and (.)s denotes average with 
respect to the distribution (2.8). The normalization factor for this distribution is 

(2.10) 

Equations (2.6) and (2.8) together define the form to be assigned to the distribution of 
restored images. Appealing to (2.1) and (2.3) we find 

(2.1 la) 



Statistical mechanics of image restoration 

where 

and 

515 

(2.1 lb) 

(2.11c) 

Equation (2.1 l a )  defines an ensemble of images whose IC ive likelihood is controlled 
by the cost function (configurational energy) (2.1 lb) ,  which is equivalent to the cost function 
used by GG in [9], except that we have neglected the line processes introduced there, and 
have chosen to restrict our analysis to the case of binary variables. The cost function is 
just that of a spin-f king model with nearest-neighbour coupling, and a site-dependent 
field. The role of the two terms is clear. The term controlled by R binds the restored 
configuration R to the data D. the binding being stronger the smaller the value assigned 
to the noise-level 4 (equation (2.5)). The term controlled by b penalizes edges in the 
restored configuration, to an extent which reflects prior convictions about the edge density 
(equation (2.9)). The character of the restored ensemble is controlled by the competition 
between these two terms. 

Now consider the functions P(S) and P(DIS). Though not to be used in the restoration 
process itself, the forms of these functions have nevertheless to be prescribed in order to 
generate the data on which the restoration process is to be tested. 

We choose the corruption process to be of the form assumed in the modelling process, 
but with a noise level q. which may differ from 8 .  Thus (cf equation (2.6)) 

(2.12) 

where, now, h = f In( l /q-  1). Varying the values assigned to h and k (the most convenient 
paramebizations of the true and model noise levels) provides one way of exploring the 
sensitivity of the restoration procedure to the accuracy of the models. 

We have chosen to explore two simple forms of source distribution. 
To explore the situation in which P(S) and P(S) are at least potentially well matched 

we have examined the case in which source images are drawn from the distribution with 
the same (2D square lattice Ising) structure as that of the model function (2.8) 

(2.13) 

but characterized hy a coupling constant K ,  at our disposal. 

case where the source is some uniquely defined image So so that 
To explore the case in which p(S) and P(S)  are ill matched we have also studied the 

P(S)  = 6S.S" (2.14) 

Where a specific form is necessary, we have chosen the source image So to be that of a 
N x N chequerboard with chequers of side m pixels, with m of the form m = 2'. This 
choice provides a source image whose spatial structure and edge density are controlled, 
simply, by a single parameter. 
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3. Prelude: Monte Carlo studies 

In the preceding section we have set out the elements of the Bayesian view of image 
restoration. The key result is (2.1 la) ,  which synthesizes the knowledge encoded in the data 
with that expressed in prior convictions about the source and the corruption process to give 
the probability distribution (the posterior) of possible restored images. In order to identify 
a typical or optimal restored image (i.e. in order to implement a restoration procedure) one 
must find a way of sampling from this distribution. As recognised by GG, Monte Carlo (MC) 
methods, widely used in exploring the statistical mechanics of condensed matter systems 
(see e.g. [28]) provide an easily realisable way of implementing this sampling, and indeed, 
the MC method has been widely used in this context (see e.g. [14,9, 131). In this section 
we use MC methods to explore the ensemble of restored images. Our aim is to expose a 
number of issues to which we shall subsequently give more systematic attention, notably 

how the quality of the posterior distribution depends upon the effectiveness of the 
underlying modelling process; 
how the posterior distribution should be used to estimate the true image; 
how the model parameters should be set. 

To provide some qualitatively helpful initial insights consider figure 2 which shows two 
sets of images. associated with two model sources. 

The upper row of figures, (a)-(e), are associated wvith a source ('true', uncorrupted) 
image, (a ) ,  drawn from an Ising ensemble (equation (2.13)) with chosen fixed coupling 
(tanh K = 0.42). The lower row of figures is associated with a chequerboard source, (a ) ,  
with chequers of size 16 x 16 pixels. All figures comprise a total of 128 x 128 pixels. 

The second figure, (b), in edch row shows the data (the input to the restoration 
procedure) generated from the associated source image by random flipping of pixels with 
chosen fixed probability (q = 0.3 for the king source; q = 0.4 for the chequerboard source). 

The third figure, (e ) ,  in each row shows a ljpical restored image, drawn from the 
ensemble defined by the posterior distribution (2.1 la ) ,  explored by MC metbods. Specifically 
we have used the,'single spin-flip' Metropolis algorithm [29] in which a pixel is selected 
at random and flipped with probability min [ l ,  e-SH], where S'H is the change in the cost 
function (2.11b) entailed in the pixel flip. The starting configuration for the algorithm is, 
in each case, the associated corrupted image. In the case of the Ising source the parameters 
of the posterior are assiged to match the source and noise parameters (f = K ,  R = h). 
In the case of the chequerboard some,  the posterior parameters are assigned to match the 
noise (h  = h) ,  and to match the density of edges in the source (f = &e, where K,e is the 
king coupling which would generate configurations with a density of edges equal to that 
of the chequerboard). 

Finally, columns ( d )  and (e)  show two ways in which the information inherent in the 
ensemble of restored images may be synthesised to yield a single estimator of the true 
image. The figures in column (d )  show the thresholded posterior mean (TPM) estimate, 
the binary image closest to the average over the posterior distribution. Column ( e )  shows 
the maximum a posteriori (MAP) estimate, the single most probable image in the posterior 
distribution. These examples show that the two estimators muy yield very different results. 
This is the motivation for the detailed comparison of the two presented in section 5 .  

Of course, irrespective of the estimator chosen, the quality of the final restored image 
is limited by the quality of the posterior distribution itself, which reflects both its structure 
and its parametrization. The parameter assignments underlying the examples shown in 
figure 2 presuppose knowledge other than that presented directly in the data itself. It is 

J M Pryce and A D Bruce 
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Figure 2 The stages of the restoration procedure M applied (upper) to an !sing source 
and (lower) to a chequerboard source: ( a )  the s o w e  image, (b) the corrupted image. (e) a 
represenwive of the restored ensemble, (d) the TPM estimator and ( e )  the MAP estimator. 

clearly of interest to establish, quantitatively and systematically, how sensitive the posterior 
distribution is to these choices. To that end we introduce a pualiryfactor, defined by 
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where 
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1 
d [A ,  BI = i~ [Aa - Bxl2 

k 

while 

(S [D] ) s  P(SID).  S and (R[DI), p(RID). R .  
(SI [RI 

The quality factor is defined as a measure of how close the chosen posterior distribution 
&RID) lies to the ‘true posterior’ P(SID) implied by full knowledge of the source 
function P ( S )  and the corruption process P (01s). Its attributes are consistent with this 
role. Thus Q is normalized to unity when the model posterior coincides with the true 
posterior (in which case the moments (S[D]) ,  and (R[D]), are equal); it is positive only 
if the first moment of the model posterior represents an improvement on the data, in the 
sense that it lies closer (than the data) to the first moment of the true posterior. 

We have explored the sensitivity of the qualily factor to the choice of model parameters 
through extensive Monte Carlo studies; the key results are summarized in figures 3 and 4. 

Figure 3 shows the quality factor for the restoration of the data generated from the 
king source (for particular K and k ) ,  over the space of model parameters d and 6 .  Three 
features are noteworthy. First, as one would expect, the quality factor is optimized when 
the posterior parameters match those of the source (k = K) and noise (h = k ) ,  which 
is possible in this case where the space of model functions contains the underlying reality 
(p(S) and P ( S )  are ‘!vel1 matched‘). Second, one sees from the shape of Q-factor contours 
around the point of optimal Q that there is an interplay between the effects of the two model 
parameters: thus if k is assigned a value other than K. the value of 6 securing optimal 
Q is no longer 6 = k .  Third, and most striking. one observes a boundary in the space of 
model parameters, marked by a steep variation of the quality factor. The boundary separates 
regions in which the posterior is effective (characterized by ‘high’ Q) from regions (of ‘low’ 
or negative Q) where it is ineffective. 

Corresponding features are evident in the behaviour of the Q factor for chequerboard 
data. Figure 4 shows the results for a variety of chequerboards (of different chequer size, 
and thus different edge density) and noise levels. In this case the model parameter space 

0.50 

0.00 
-I I ’  

0.00 0.25 0.50 0.75 1.00 

Figure 3. Simulation results for the well 
matched prior: contour plot of the qualily 
factor, as a function of the restoration 
panmeters. far a king source with density 
of edges ES = 0.25 and noise q = 0.2 
( m h ( K )  cz 0.36, tmh(h) = 0.6). tanh(L) 
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4x4 ( E S  = 0.25) 
[tanh(l(.s) Y 0.361 

16x18 ( E S  = 0.0625) 
[tanh(lC,n) E 0.461 
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Figure '4. Simulation results for lhe ill matched prior: contour plot of the quality factor, a?. B 
function of the restoration panmeters, for chequerboards with various chequer sizes (density of 
edges ( 5 )  and noise levels (4). 

does not contain the data. generator: it impossible to choose posterior parameters that 
exactly 'match' the generation process ( P ( S )  and P(S) are 'ill matched'). Moreover, the 
assignment (based on the density of edges in the source) f = Kef turns out, in general, 
not to be Q-optimal: the results show that the Q-optimal values of both f and depend 
upon the density of edges (the chequer size) and the noise level. Again the results suggest 
that there are distinct regions of effective and ineffective posteriors. 

These observations provide the motivation and context for the other parts of the 
programme reported here. The interplay between the model parameters apparent in the Q- 
factor features in section 6 where we address the question of how model posterior parameters 
should be assigned on the basis of the corrupted data alone. (The Q-factor, of course, folds 
in information about the source!). The performance-boundaries displayed by the Q-factor 
are the focus of attention in the next section where we shall see that they are manifestations 
of phase transitions. 

4. Assessing the posterior: prior-data competition 

In this section we explore the phase structure ('thermodynamics') associated with the 
ensemble of restored variables R, given a model posterior built from an edge density prior, 
and a Gaussian-noise likelihood. Our aim is to explore how the phase structure depends 
upon the parameters it and f modelling the corruption process and the source, which for 
the purposes of this calculation we shall take to be some fixed image So. The phase 
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structure is conholled by the partition function (2.1 IC), and its dependence upon certain key 
macroscopic properties ('order parameters') to be identified below. The partition function 
is hard to evaluate exactly, because of the quenched disorder associated with the data D. 
We proceed, rather, within a mean-field approximation which, we shall see, illuminates the 
essential features displayed by our Monte Carlo studies. 

We shall utilize the variational formulation of the theory: the technique is well known 
(see e.g. 1301) and we shall describe the calculation in outline only. 

We introduce a variational representation of the partition function of interest 
(equation (2.1 IC)): 

z v E f C e x p t - ' ~ v ]  (4. la) 

J M Pryce and A D Bruce 

IRI 
where 

nv = R,[AO + ;ri+(i +st) + ; H - ( I  - si)] . (4.lb) 

The fields H+ and H- are introduced with a view to the order parameters defined 
below; they are conjugate to the restored variables at sites at which the source variable has 
value +1 and -1, respectively. The true partition function may then be recast in the form 

i 

. .  
The identity (4.2) motivates the mean-field approximation 

Z N Z m  Zvexpt('Hv - ' H ) H ~ ] .  (4.3) 
Since the variational cost function (4.W comprises a sum of independent (single-site) terms 
it is straightforward to implement the averages in (4.3). After some calculation we find 

~ M F  = -- In ZMF = -i(l - q)  In cosh(uk[( 1 - &s)R+ + ~ s R - 1  + h )  
-1q Incosh{vk[(l- &s)R+ + t ~ R - 1 -  i] 
-;(l -q)Incoshtvk[(l -&s )R-+&~R+]  -h]  
-iqlncosh{v%[(l -&s)R- +.ssRf]+i] 

+$kuR+I(l - c s ) R + + ~ s R - l +  $kuR-[(l -ES)R-+ESR+] -1112. 

der 1 
N 

-fku[$(l -cs)(R+'+ R-') + ssR'R-1 

(4.4) 
We have used the variational principle to eliminate the fields H +  and H- in favour of the 
order parameters 

(4.5a) 
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= (1 - q )  tanh(H- - f i )  + q tanh(H- + 6) (4.5b) 

while the source S is entirely parametrized by the (true) density of edges E S .  The dependence 
upon the specific realization of the data D self-averages out in the course of the calculation, 
so that 4.4 serves as an approximation to the full quenched average: 

1 
N 

F ~ - - ( ( l n 2 ) ) ~  N fMF. 

The minima of this free energy in the space spanned by the order parameters R+ and 
R- are located by the solutions to the coupled equations 

( 4 . 6 ~ )  

(4.6b) 

The physical character of the minima is most naturally expressed through linear 
combinations of the two order parameters: 

and 

(4.76) 

We call 6 the overlap: it measures the correlation between the mean restored image and the 
source, a correlation which is mediated entirely through the data (since the source itself does 
not appear explicitly in the posterior!) We call M the biur: a non-zero bias is attributable 
entirely to the influence of the prior (in particular the ‘ferromagnetic’ behaviour promoted 
by the edge-suppressing coupling) since our sources have no intrinsic bias. With these 
remarks in mind we shall call solutions with non-zero M prior-like and solutions with zero 
M data-like. Prior-like solutions typically have small (but not necessarily zero) overlap U 
(cf figure 7 ) .  

Figure 5 shows contours of the free energy surfaces defined 9 (4.4), in the space 
of the order parameters R*, for a selection of couplings i? and h (and with fixed but 
essentially arbitrary values of the data-generating parameters q and 6s). The turning points 
in this surface correspond to the solutions of the coupled equations ( 4 . 6 ~ )  and (4.66). The 
character of the surface changes qualitatively according to the values of i? and i .  If we 
classify each point according to the number of local minima and the character of the global 
minimum, we generate the phase diagram shown in figure 6. Although its details reflect 
the values chosen for the data-generating parameters, the general structure of this phase 
diagram is typical of a wide range of parameters. Its essential character is intelligible on 
the basis of the limiting behaviour associated with its bounding axes. 

Along the right-hand boundary (i + 00) the solution is trivially data-like: the restored 
image is fully bound to the data, implying zero M and non-zero 6 = 1 - 2q. Along the 
lower boundary (i? = 0) the solution is also data-like, but with overlap (1  - 2q)tanh(&), 
which is less than that between data and source: on average the ‘restoration’ procedure 
actually degrades the image in this regime. Along the upper boundary (i? --f 00) the 
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Figure 5. COntOUIS Of the mean-field free energy density j M F  z ~ M F  +h2,  where fMF is given 
by (4.4). The underlying data-generating parameters are 6s = 0.125 and q = 0.3. The sir sets 
of data are each representative of one paint in the space of restoration parameters 2.6. drawn 
from each of the regions I-VI, depicted in the phase diagram (figure 6). In regions I, IV and V 
the global minimum is data-like; in the remaining regions the global minimum is prior-like. 

Figure 6. The mean-field phase diagram 
with €3 = 0.125 and y = 0.3. The full 
e w e  separates data-like and prior-like phases. 
each of which is subdivided into three regions. 
distinguished by the number and character of 
metastable states. i l ~  detailed in table 1 .  The 
broken curves identify possible paths followed 
in the course of MAP annealing schedules, as 
discussed in section 5 .  

solutions are prior-like, with zero overlap and M = + I ,  corresponding to the two edge-free 
single-colour 'ground-states' of the prior. Finally, the significant feature of the left-hand 
boundary (h + 0) is a phase transition between zero bias and non-zero bias phases at 
i? = l / v  = 1/4 (tanh i? y _  0.25), the mean-field critical coupling of the ZD Ising model. 
From this point there emerges a phase boundary (shown as a full curve in figure 6) which 
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Table 1. The numbers in the first column identify the six regions of the phase diagram shown in 
figure 6.  The second column identifies the number and character of the msociated free energy 
minima. which fall into three categories: datd ike  with 0 # 0, M = 0; prior-like with 0 = 0. 
M # 0; mti-data-like with 0 negative, M = 0. In each case UE global minimum is in italics. 
Note that region 11 (alone) has no dah-like minima: a restontion scheme cannot work in this 
region. Our studies show that the size of this region grows with the degree of difficulty presented 
by the restoration problem, which increases with increasing q and cs,  

Figure 7. The mean-field predictions for the 
behaviour of the overlap 0 (full curve) and 

fs = 0.125 and q = 0.3 (as in the phase 
bias M (broken curve), for source parameters 

Region number Free energy minima 

I I dato 
I1 2 prior 
nI 2 prior, 1 data 
IV 2 prior, I dda 
V 
VI 

2 prior, I dda, 1 anti-data 
2 prior, I data, I anti-data 

divides the phase diagram into two phases, a data-like phase below the phase boundary, 
and a prior-like phase above it. Except in the i + 0 limit, the data-prior phase transition 
resulting when this phase boundary is crossed is first-order, involving discontinuous changes 
in the order parameters. Figure 7 shows the behaviour for a typical value of tanhi. 

The data-like and prior-like phases are subdivided into a number of different regions, 
distinguished by the number and character of the metastable free energy minima they 
display in addition to the global minima which define their equilibrium behaviour (table I). 
The boundaries of the three regions (I, IV and V) making up the data-like phase and the 
boundaries of the remaining three regions (II, III and VI) which form the prior-like phase do 
not signal phase transitions as such, but existence boundaries for metastable states. Thus. for 
example, the metastable prior-like solutions present in region IV disappear at the boundary 
with region I. 

The existence of the phase boundary is reflected in the behaviour of the Q-factor which 
may also be calculated within the mean-field framework. When, as we envisage here, the 
source consists of a single specific image So (the true source distribution is of the form 



524 J M Pryce and A D Bruce 

( 0 )  (b) 

Figure 8. Comparison of mean field and simulation resulh for the quality factor Q. (a) Results 
for the mean-held calculation with parameters cs = 0.125 and q = 0.3. (b)  Simulation results 
for the corresponding 8 x 8 chequerboard, 

(2.14)) the elements of the Q-factor (equation (3.1)) can be written as 

(d[D,  (stDl)sl)D = ( d [ D ,  PI), = 4q ( 4 . 8 ~ )  

and 

(4.8b) 

The final term in this equation can be expressed (through the auxiliary fields Ht and H-) in 
terms of Rt and R-, thence providing a complete specification of Q within the mean-field 
approximation. The results are displayed in figure 8 alongside the results of Monte Carlo 
studies. In the mean-field calculations (figure 8(0)), the parameters q and ES (which fully 
parameterize the source) are assigned values matching those of the source actually used in 
the Monte Carlo calculation (an 8 x 8 chequerboard). The mean-field calculation reproduces 
the observed structure rather well, qualitatively at least Most significantly, perhaps, it shows 
that the catastrophic failure of the restoration scheme in some regions of parameter space is a 
manifestation of the underlying phase transition: if the restoration parameters are chosen to 
lie in the prior-dominated phase, the edge-suppressing coupling in the prior overwhelms the 
field binding the image to the data and the ensemble of restored images is largely edge-free 
and uncorrelated with the source. Closer inspection shows that, not unexpectedly, the mean- 
field analysis has its limitations. Of course, it misplaces the phase boundary somewhat: the 
mean-field approximation underestimates the critical coupling of the ?D king model by 
almost a factor of 2. More significantly, however, the discontinuity at the phase boundary 
in the mean-field calculation has as its counterpart in the simulations (figure 8(b)) a steep 
but continuous drop in the Q-factor. This difference can be understood, qualitatively, within 
the wider mean-field framework: we attribute it to the influence of long-lived states, bound 
to the data, the 'real' counterparts of the metastable data-like solutions which the mean-field 
calculation finds in the prior-like phase. Simulations initiated from the data configuration 
D may remain trapped in such states for the time span of the simulation. In fact, the 
mean-field calculations suggest that the Q-factor may actually continue to increase across 
the phase boundary if the metastable states are tracked; the simulations do not illuminate 
this issue, since they do not allow one to determine the precise location of the underlying 
phase boundary. 
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5. Utilizing the posterior: MAP versus TPM 

Thus far we have focused on the quality of the model posterior distribution itself. We now 
tum to consider the two principal ways in which the posterior may be used to identify a 
single binary image that is in some sense optimal. 

The threshoued posferior mean (TPM) estimator is defined by 

Tk = Sgn ((RkID]),) . (5.1) 
It is ‘optimal’ in the sense that (see e.g. [ll]) it is the binary image whose overlap with the 
source has maximum expectation value (minimum mean-square bitwise error), given the 
data and the modelling ussumptiom. 

The m i m u m  a posteriori (MAP) estimator is defined by 

MX = R Y p  where P(RmpID) = sup P(RID). (5.2) 

It is optimal in the sense that it identifies the single most likely binary image, given the 
data and the modelling assumptions. 

The original CO paper [9] focused on the MAP estimator; much subsequent work has 
followed suit (see e.g. [31, 14,10,13,32,22]). There is only a small body of work that begins 
to recognize the utility of the TPM estimator [19,33,18,11]. A systematic comparison of 
their merits seems overdue. 

The first point to make is that the task of finding the MAP estimator is vastly more 
computationally intensive than is that of finding the TF’M estimator. To determine the TPM 
(equation (5.1)) requires onlyt a direct sampling of the model posterior distribution. To 
determine the MAP estimator (equation (5.2)) requires that one finds the minimum of the 
cost function (ground state of the configurational energy) ‘H (equation (2.llb)). f f f u l l y  
implemented, this is a computationally demanding task given the complexity of the landscape 
and the danger (although we shall see that it should not necessarily be seen as such) of the 
search process being trapped in local minima. This risk can be reduced by using simulated 
annealing [34]. Indeed, GG [9] present a proof that, with a suitable annealing schedule, 
simulated annealing is guaranteed to find the global minimum and hence the exact MAP 
estimator. However, such a schedule would take a prohibitive length of time to complete 
(the total number of site updates required is exponential in the system size N ) .  They 
claim that acceptable results are obtained using a logarithmic schedule but even with this 
faster schedule the annealing process is still far more computationally intensive than the 
calculation of the TPM estimator. 

Next let us consider the relative quality of the two estimators. We know U priori that 
the TPM estimator is guaranteed to give maximal overlap with the source in the idealized 
case in which the model posterior matches the true posterior$. 

This claim is quantified in the results presented in figure 9(a), which shows the overlap 
of TPM with the source, less the overlap of MAP with the source, for a range of Ising source 
data-generating parameters ( K  and h) with restoration parameters chosen to match (k = K 
and i = h). The difference is non-negative: the MAP estimator never beats TPM for any 
choice of parameters, in accord with the a priori guarantee. Of rather more interest is the 
situation where the model posterior is less than perfect. Figure 9(b) makes the comparison 
for the case of a chequerboard source and king prior. Here we see that there are choices 

t There is some small print here. In practice this means sampling from the portion of the posterior disbibution 
explored in the quasi-equilibrium reached by simulations initiated tiom the data 
t The TPM image T has maximum overlap with (R[DI)R which coincides with (S[D])s  when the first moments 
of ’model’ and ‘me’ posterior are equal, as signalled by a Q-factor (equation (3.1)) of unity. 

(RI 
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(a) ( b )  

F l y r e  9. Compmiron of MAP and WM estimataa. The vertical coordinate is the mem difference 
between the TPM md MAP overlap with the relevant source (a) Result for an king source. 
with restoration p m e t e a  chosen to match the data-generating parametem (k = K ;  h = h). 
(b) Results for a 8 x 8 chequerboard s o m e  with y = 0.3. In the region lying within thc heavy 
contour the MAP estimator docs better than the WM estimator. 

of the restoration parameters for which MAP does better than TPM. Nevertheless, in wide 
ranging studies we have always found the optimal TPM estimator to be better than the best 
obtainable with MAP. Moreover, as figure 9(b) suggests, the region of parameter space where 
TPM does better is larger than the region where MAP does better. 

To illuminate this point (and also some other features of MAP [17,18,11]) it is helpful 
to consider the ‘path’ followed by the system undergoing annealing to its ground state, in 
relation to the phase diagram shown in figure 6. The annealing process generates a family 
of restoration parameters t ( T )  and i ( T ) ,  parametrized by an effective temperature T, and 
defined by 

W ( t ( T ) ,  i(T)) = X(k. J ) / T .  (5.3) 
In the T + 0 limit the posterior distribution condenses on the MAP estimate. From the 
structure of the cost function (2.11b) it is apparent that the annealing process (lowering the 
effective temperature T) increases f? and L simultaneously while maintaining a constant 
ratio k / i .  Since the phase diagram has tanh(f) and tanh(i) as the axis variables, the lines 
of constant ratio are not straight (except for the trivial case of i? = L); two such isolines 
are shown (figure 6), traversing two different regions (A) and (B) of the phase diagram, and 
terminating in its top right-hand corner. 

First consider a system with restoration parameters lying at (or near) point (A), in the 
data-like phase. In this case the ensemble of restored images has non-zero overlap with the 
source, and the TPM estimator will produce reasonable results. If we anneal towards the 
MAP estimator, however, we follow the relevant isoline which crosses the phase boundary 
into the prior-like phase: the resulting MAP estimator thus has zero overlap with the source. 
MAP must fail in this way for any parameters that lie on an annealing path that crosses the 
phase boundary. This is why one finds regions of restoration parameter space where MAP 
fails catastrophically, while TPM is reasonable (cf figure 9(b), noting that the peak in the 
difference between MAP and TPM coincides with region (A) in figure 6). 

This argument also explains why the region of parameter space in which TPM performs 
reasonably is always larger than the region in which MAP performs reasonably. Any point in 
parameter space where the TPM estimator is ‘bad’ (where ‘bad‘ means worse than the data) 
lies in the prior-like phase. No annealing paths (isolines) cross back from the prior-like 
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phase into the data-like phase; so the associated MAP estimator is also necessarily ‘bad‘, 
The finer detail of the phase diagram also allows us to understand the discrepancies 

which others have noticcd [I71 between the exact MAF estimator and the MAP estimator 
found by simulated annealing. Consider a system with restoration parameters lying in 
region @) of the phase diagram. Again the parameters lie in the dah-like phase, and the 
TPM will be reasonable; again the annealing path crosses the boundary, and if followed 
leads to the exact MAP estimator which has no overlap with the source. However, in this 
case the annealing path crosses the phase boundary in a region where the parameters 2 ( T )  
and L ( T )  are relatively large (i.e. at a low effective temperature T): the likelihood of the 
system being trapped in a metastable data-like state is substantial. Thus while the exuct MAP 
estimator is prior-like and useless, the practically annealed MAP estimator is data-like and 
reasonable. Nevertheless, even this success for MAP is scarcely satisfying: it seems absurd 
to rely upon the metastable states for good restoration, when using a method specifically 
designed to avoid them! 

6. Parameter estimation: evidence and free energy 

6.1. Introduction 

Irrespective of the way in which one chooses to use the posterior, the quality of any final 
reconstructed image is ultimately limited by the quality of the prior, both in regard to form 
and parametrization. The problem of (prior) parameter estimation is thus central to the 
image restoration task. A great deal of work has actually skirted the problem, assigning 
parameter values on an ad hoc basis (e.g. [9, 191); this is clearly unsatisfactory. Most of 
the image restoration work that does address the issue of parameter estimation assumes (as 
does the evaluation of the quality factor Q, defined in (3.1)) that an ensemble of prototype 
uncorrupted pictures is available which can be analysed in an attempt to parameterize the 
source correctly [10,20,22.35]. These papers build on the large body of work in the 
statistics literature on parameter estimation from complete or fully observed data [36401. 
There has been less work on parameter estimation from incomplete data. The iterative 
EM algorithm for parameter estimation [41] is now being applied to image restoration in 
the engineering literature [42]. A similar method found in both the engineering [43] and 
statistics [44] literature involves simultaneous image restoration and parameter estimation. 
However, there is no guarantee that such a re-estimation process will converge to even 
a local maximum of the parameters and the reconstruction simultaneously. Certainly the 
methods are unlikely to find the global maximum and, in general, the results depend upon 
the initial choice of parameters. 

In this section we consider a generalized maximum likelihood formulation of the 
problem. Specifically we shall adopt the language of the ‘evidence’ framework developed 
by Gull [24] as a method for estimating the free parameter in conventional maximum 
entropy restoration, and subsequently applied to the Bayesian training problem for back- 
propagation neural networks [45,46]. We note that the ideas involved have precursors in 
earlier work. (See e.g. [47]; the G-metric defined there corresponds to the negative of the 
‘average log-evidence’ considered below.) 

Let us first outline the key ideas in general terms. Appealing back to the general 
framework developed in section 2.1, we note that the normalizing factor in (2.1) must 
satisfy 
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where we introduce ( p )  to represent the set of parameters implicit in the model prior P(Slp) 
and likelihood P(DlS, p ) .  The conditional probability P(DIp) is the evidence for the 
parameters ( p ) .  The rationale for the name lies in the fact that, in the absence of biasing 
information on the parameters, the evidence provides a direct measure of the conditional 
probability P(/?ID). The parameters which maximize the evidence thus represent the single 
most likely (MAP) parameter values given the data (not to be confused with the MAP estimator 
of the source image, given the data and model parameters, considered in the previous 
section). We proceed to illuseate the idea with a simple explicit example before turning to 
consider the application of the idea to the parametrization of the non-trivial (edge-density) 
prior models we have focused on in this paper. 

J M Pryce and A D Bruce 

6.2. A toy example 

For illustrative purposes we consider a simple probtem in which the evidence can be 
evaluated analytically. Instead of our usual edgedensity prior (equation (2.8)) we take 
a prior which assumes that the source is a chequerboard of chequer size 28, denoted by S'. 
Thus we write 

P(S1E) = P ( s )  = 6 S . 8  . (6.2) 
Retaining the form (2.6) for the model likelihood, the evidence (6.1) assumes the simple 
form 

Now let us suppose that, in fact, the source is a chequerboard of chequer size 2', and 
that (as usual) the true noise q is parametrized by h = $ln(l/q - 1). Then, invoking the 
thermodynamic limit (or, equivalently, a quenched average over the noise), we identify the 
log-evidence density 

where we have used the result that 

Clearly, the evidence is maximized (the associated 'free energy' is minimized) when the 
chequer size is correctly assigned: Z = c. Moreover, the turning point condition 

correctly picks out R = h,  provided the chequer size is assigned correctly. The failure of the 
method to identify the noise parameter when the chequer size is already assigned incorrectly 
is indicative of the unreliability of the method when elements of the prior are structurally 
incorrect. 

6.3. Parameter estimation for rhe edge densib prior 

In general, evidence calculations pose a computationally intensive problem analagous to the 
calculation of the free energy of a system with quenched disorder. A number of novel and 
powerful techniques for Monte Carlo free energy evaluation have emerged in recent years 
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(see e.g. 148, 491). However, in the studies reported here we have found it adequate to 
appeal to standard ‘thermodynamic’ integration methods (see e.g. 1501). 

For the edge density prior (2.8) the evidence is 

from which one finds that 

(6.5) 

(6.6) 

where ( . ) R  signifies averaging with respect to the probability p(RID). 
The evidence for a given coupling k may thus be determined by numerical integration 

of the correlation function along the path to zero coupling. 
Consider first the situation in which p(S) and P ( S )  are well matched: the source image 

is drawn from an king distribution of specific K, and the noise process is Gaussian with 
noise level q (corresponding to a field h). Figure 10 shows the log evidence In & D [ k ,  i), 
as a function of k, k ,  computed using representative corrupted images D derived from an 
Ising source with the same parameters as those underlying the Q-factor results presented in 
figure 3. In this case, the evidence maximum correctly identifies the generating parameters 
and thus coincides with the maximum of the quality factor. The large negative evidence 
characteristic of the region where k and & are both large is striking: it can be understood 
as follows. The underlying data (generated from a near critical coupling) has approximately 
zero bias; in the large k and h region the hypothesis being evaluated is that the source 
coupling is a close representation ( h  is ‘large’) of a source of large coupling, and thus large 
bias. The hypothesis is thus particularly poor; this is what the evidence shows. 

When &S) and P(S) are ill matched the results are more problematic. Figure 11 
plots the log evidence for the parameters of the same edge-density model but with a range 
of chequerboard sources and noise levels. Comparison with figure 4 shows that there is 
qualitative similarity between the most likely parameters identified by the maximum of 
the evidence and the optimal parameters identified by the maxima of the Q-factor. (It 
should be recalled that the former-the evidence-utilizes only instances of the actual data 

h 
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tanh(h) 

Figure 10. The log evidence for  the 
lsing prior with king source:-the cpnlours 
show the value of E = In P(DlK, h) + 
N In 2 averaged over 50 realivtionr of data 
consmcted from an N = M2 lsing source 
with the density of edges ES = 0.25 and 
noise q = 0.2 ( t m h ( K )  cz 0.36, tanh(h) = 
0.6), as in figure 3. The positive contours 
are spaced every 20 units. The negative 
contours in the top right are spaced evuy 
1OW units. 
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Figure 11. The log evidencp tor the King prior, with chequerboard sources: the contours show 
lhe value of E = I n P ( D l K .  h )  t N l n 2  (for N = 64% averaged over 50 realizations of data 
constructed from chequerboards with various chequer sizes (density of edges cg) and noise levels 
(4); only positive contours are plotted. The values and locations of !he evidence maxima E,, 
are noted in each case. (For comparison, the evidence values for chequerboard priors, optimally 
tuned to these chequerboard sources (i.e. R = h and Z = c) follow from (6.4) 35 E,, = 1508 
when tanh(h) = 0.8 and E,, = 82 when tanh(h) = 0.2). 

D ;  while the latter-the Q-factor-utilizes knowledge of the full true source distrihution 
P(S) . )  Thus, in particular, both the Q-optimal and evidence-maximal couplings I? increase 
with increasing chequer size; both Q-optimal and evidence-maximal fields increase with 
decreasing source noise. But the overall level of agreement is poor-particularly in the case 
of the largest chequer size and the lower noise level. 

The lesson (already apparent from the toy example discussed above, and explored 
in a different context elsewhere [51]) is clear: evidence does not provide a reliable 
performance measure (and thus guide) when the modelling assumptions (swctures of priors) 
are intrinsically poor. On a more positive note, however, comparison of the results of 
figure 11 with those of equation (6.4) readily shows that (cf caption to figure 11)) the 
evidence for an king source-even if assigned the evidenceoptimal parameters-is always 
less than the evidence for the (actual) chequerhoard source. It may be that it is in such model 
comparison (as distinct from parameter estimation) that the evidence procedure ultimately 
proves most fruitful. Expanded ensemble methods of free energy calculation [48] may prove 
useful here. 
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7. Conclusions 

Image restoration is a hard problem, with many unsolved aspects. Over the years. it has 
been addressed in a wide variety of disciplines, ranging from signal-processing to applied 
statistics. In this paper, building on the seminal work by Geman and Geman [9], we have 
endeavoured to show that important aspects of the problem may be illuminated by appeal 
to the methods and concepts of statistical mechanics. 

Our mean-field analysis does much to explain the dependence of the quality of the 
posterior distribution on the restoration parameters. The competition between an image- 
smoothing prior and a data-binding likelihood gives rise to a posterior that supports phase 
transitions between data-dominated and prior-dominated regions. In the prior-dominated 
regions the posterior (and any restoration scheme based on it) will be useless, unless one 
can capitalize on the metastable data-like states which persist beyond the phase boundary. 

In our comparison of the different ways in which one can use the posterior to identify 
a single binary image, we have found that almost invariably TPM provides a more reliable 
estimate of the original source image than does MAP. Although choosing the optimal values 
for the restoration parameteB remains problematical, it is easy to avoid the region of 
parameter space where the TPM estimate offers no improvement, and it is only in a part of 
this region that MAP may do better than TPM. We have seen that the process of finding the 
MAP image can fail badly if the annealing process traverses the data-prior phase transition. 
Such ‘gains’ as are made along the annealing path are lost when the phase boundary is 
crossed, and much of the computation time is wasted annealing in the ‘wrong’ part of 
the phase diagram. The existence of metastable data-like states accounts for the fact that 
simulated annealing may fail to reproduce the exact MAP estimate (and may do all the better 
thereby). The TPM estimate is free of such problems, and may be computed in a fraction 
of the Monte Carlo time. We believe that it should be the favoured estimate for image 
reconstruction problems. 

Our studies of the evidence procedure for assigning restoration parameters show that 
the effectiveness of the method is limited by the quality of the form of the prior. If the 
prior is well matched to the source, the most probable parameters identified by the evidence 
maximum coincide with the data-generating parameters, and secure optimal quality for the 
posterior. But if the prior models the source poorly, the evidence optimal parameters are 
not, in general. reliable guides to the parameters which will optimize the quality of the 
posterior. Nevertheless the development of techniques for Monte Carlo calculations of free 
energy holds out interesting possibilities for the use of evidence in comparing model priors. 
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